SQL Introduction
Here we provide an overview of how to perform simple operations in SQL. This tutorial is only intended to give you an introduction and is in no way a complete tutorial on SQL. This tutorial is adapted from the PostgreSQL tutorial.
Concepts
Flowmap City uses DuckDB. DuckDB is a relational database management system (RDBMS). That means it is a system for managing data stored in relations. A relation is essentially a mathematical term for a table.
Each table is a named collection of rows. Each row of a given table has the same set of named columns, and each column is of a specific data type. Tables themselves are stored inside schemas, and a collection of schemas constitutes the entire database that you can access.
Querying a Table
To retrieve data from a table, the table is queried. A SQL SELECT
statement is used to do this. The statement is divided into a select list (the part that lists the columns to be returned), a table list (the part that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies any restrictions). For example, to retrieve all the rows of table weather, type:
SELECT * FROM weather;
Here *
is a shorthand for "all columns". So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;
The output should be:
city | temp_lo | temp_hi | prcp | date
---------------+---------+----------+------+------------
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0.0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29
(3 rows)
You can write expressions, not just simple column references, in the select list. For example, you can do:
SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;
This should give:
city | temp_avg | date
---------------+----------+------------
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)
Notice how the AS
clause is used to relabel the output column. (The AS
clause is optional.)
A query can be "qualified" by adding a WHERE
clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is true are returned. The usual Boolean operators (AND
, OR
, and NOT
) are allowed in the qualification. For example, the following retrieves the weather of San Francisco on rainy days:
SELECT * FROM weather
WHERE city = 'San Francisco' AND prcp > 0.0;
Result:
city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
San Francisco | 46 | 50 | 0.25 | 1994-11-27
You can request that the results of a query be returned in sorted order:
SELECT * FROM weather
ORDER BY city;
city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0.0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27
In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either order. But you'd always get the results shown above if you do:
SELECT * FROM weather
ORDER BY city, temp_lo;
You can request that duplicate rows be removed from the result of a query:
SELECT DISTINCT city
FROM weather;
city
---------------
Hayward
San Francisco
(2 rows)
Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT
and ORDER BY
together:
SELECT DISTINCT city
FROM weather
ORDER BY city;
Joins Between Tables
Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once, or access the same table in such a way that multiple rows of the table are being processed at the same time. A query that accesses multiple rows of the same or different tables at one time is called a join query. As an example, say you wish to list all the weather records together with the location of the associated city. To do that, we need to compare the city column of each row of the weather table with the name column of all rows in the cities table, and select the pairs of rows where these values match.
This would be accomplished by the following query:
SELECT *
FROM weather, cities
WHERE city = name;
city | temp_lo | temp_hi | prcp | date | name | lon | lat
---------------+---------+---------+------+------------+---------------+-----+----
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | -194| 53
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | -194| 53
(2 rows)
Observe two things about the result set:
- There is no result row for the city of Hayward. This is because there is no matching entry in the cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will see shortly how this can be fixed.
- There are two columns containing the city name. This is correct because the lists of columns from the weather and cities tables are concatenated. In practice this is undesirable, though, so you will probably want to list the output columns explicitly rather than using
*
:
SELECT city, temp_lo, temp_hi, prcp, date, lon, lat
FROM weather, cities
WHERE city = name;
Since the columns all had different names, the parser automatically found which table they belong to. If there were duplicate column names in the two tables you'd need to qualify the column names to show which one you meant, as in:
SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.lon, cities.lat
FROM weather, cities
WHERE cities.name = weather.city;
It is widely considered good style to qualify all column names in a join query, so that the query won't fail if a duplicate column name is later added to one of the tables.
Join queries of the kind seen thus far can also be written in this alternative form:
SELECT *
FROM weather INNER JOIN cities ON (weather.city = cities.name);
This syntax is not as commonly used as the one above, but we show it here to help you understand the following topics.
Now we will figure out how we can get the Hayward records back in. What we want the query to do is to scan the weather table and for each row to find the matching cities row(s). If no matching row is found we want some "empty values" to be substituted for the cities table's columns. This kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:
SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);
city | temp_lo | temp_hi | prcp | date | name | lon | lat
---------------+---------+---------+------+------------+---------------+-----+----
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | -194| 53
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | -194| 53
Hayward | 37 | 54 | | 1994-11-29 | | |
(3 rows)
This query is called a left outer join because the table mentioned on the left of the join operator will have each of its rows in the output at least once, whereas the table on the right will only have those rows output that match some row of the left table. When outputting a left-table row for which there is no right-table match, empty (null) values are substituted for the right-table columns.
Aggregate Functions
Like most other relational database products, DuckDB supports aggregate functions. An aggregate function computes a single result from multiple input rows. For example, there are aggregates to compute the count
, sum
, avg
(average), max
(maximum) and min
(minimum) over a set of rows.
As an example, we can find the highest low-temperature reading anywhere with:
SELECT max(temp_lo) FROM weather;
max
-----
46
(1 row)
If we wanted to know what city (or cities) that reading occurred in, we might try:
SELECT city FROM weather WHERE temp_lo = max(temp_lo); -- WRONG
but this will not work since the aggregate max cannot be used in the WHERE
clause. (This restriction exists because the WHERE
clause determines which rows will be included in the aggregate calculation; so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the case the query can be restated to accomplish the desired result, here by using a subquery:
SELECT city FROM weather
WHERE temp_lo = (SELECT max(temp_lo) FROM weather);
city
---------------
San Francisco
(1 row)
This is OK because the subquery is an independent computation that computes its own aggregate separately from what is happening in the outer query.
Aggregates are also very useful in combination with GROUP BY
clauses. For example, we can get the maximum low temperature observed in each city with:
SELECT city, max(temp_lo)
FROM weather
GROUP BY city;
city | max
---------------+-----
Hayward | 37
San Francisco | 46
(2 rows)
Which gives us one output row per city. Each aggregate result is computed over the table rows matching that city. We can filter these grouped rows using HAVING:
SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max(temp_lo) < 40;
city | max
---------+-----
Hayward | 37
(1 row)
which gives us the same results for only the cities that have all temp_lo values below 40. Finally, if we only care about cities whose names begin with "S", we can use the LIKE
operator:
SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE 'S%' -- (1)
GROUP BY city
HAVING max(temp_lo) < 40;
More information about the LIKE
operator can be found here.
It is important to understand the interaction between aggregates and SQL's WHERE
and HAVING
clauses. The fundamental difference between WHERE
and HAVING
is this: WHERE
selects input rows before groups and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas HAVING
selects group rows after groups and aggregates are computed. Thus, the WHERE
clause must not contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will be inputs to the aggregates. On the other hand, the HAVING
clause always contains aggregate functions.
In the previous example, we can apply the city name restriction in WHERE
, since it needs no aggregate. This is more efficient than adding the restriction to HAVING
, because we avoid doing the grouping and aggregate calculations for all rows that fail the WHERE
check.